

CONTENTS

MODEL

Solid Discharge	3 inch Solid Size
3 inch Discharge	3CNMJ42.2T * _22-2, 3CNMJ43.7T * _37-2
4 inch Discharge	4CNMJ42.2T * _22-2, 4CNMJ43.7T * _37-2
4 inch Discharge	4CNMJ45.5T * _55-2, 4CNMJ47.5T * _75-2
L	* Voltage: 2 means 208/230V, 3 means 460V.

MODEL DESIGNATION

SPECIFICATIONS

DRAWINGS

Performance Curve Pump Dimensions Pump Dimensions for Guide Rail Installation Type Pump Dimensions for Stand Alone Installation Type Section View and Material List Guide Rail

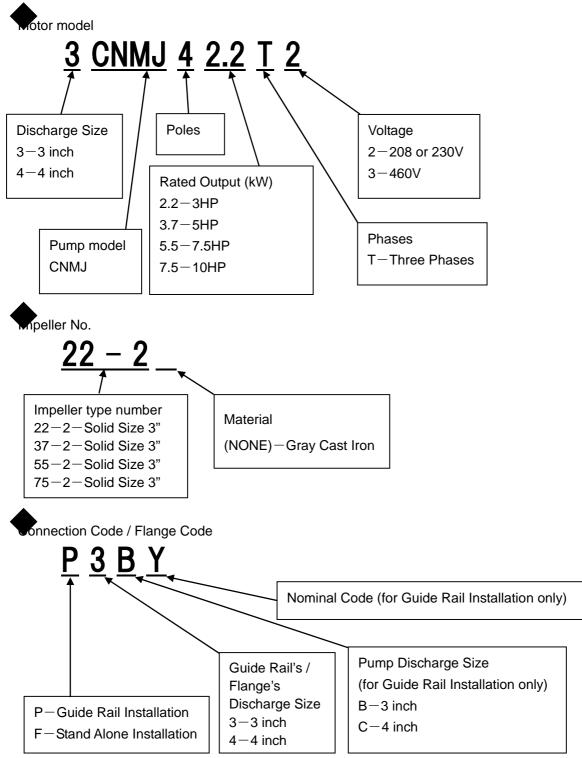
TAP INFORMATION FOR STAND

SHOP PAINTING STANDARD

MECHANICAL SEAL, BALL BEARING AND LUBRICATION OIL LIST

MECHANICAL SEAL

MOTOR DATA


PROTECTOR

WIRING DIAGRAM

WEIGHT (PUMP, ACCESSORY)

MODEL DESIGNATION

SPECIFICATIONS

Model: 3CNMJ, 4CNMJ

	STANDARD	OPTIONAL
Discharge Size	3, 4 inch	
Solid Size	3 inch	
Range of HP	3, 5, 7.5, 10 HP	
Range of Performance	Capacity 26 to 818 (USgpm)	
	Total Head 6 to 84 (ft)	
Limitation		
Type of Liquid Handled	Sewage, Waste water	
Minimum Water Temperature	32 °F (0°C)	
Maximum Water Temperature	104 °F (40°C)	
Motor	Insulation Class F, Three Phase	
Voltage / Hz	208/230V, 460V / 60Hz	
Synchronous Speed	1800 RPM	
Impeller Type	ShinMaywa Non-clog Single-vane	
	Semi-open Impeller	
Material		
Pump Housing	Cast Iron (ASTM A48 Class 35)	
Impeller	Cast Iron (ASTM A48 Class 35)	
Shaft	420J2 Stainless Steel	
Motor Frame	Cast Iron (ASTM A48 Class 30)	
Fastener	304 Stainless Steel	
Chopper Plate	304 Stainless Steel	
Mechanical Seal Materials		
Upper side	Silicon Carbide / Silicon Carbide	
Lower Side	Silicon Carbide / Silicon Carbide	
Bearing		
Upper side	Single Deep Groove Ball Bearing (Creep Prevention Type)	
Lower Side	Single Deep Groove Ball Bearing	
Motor Protection	Thermal Protector (Auto Reset Type)	Leakage Detector
Accessory	Submersible Cable 50ft (15m)	

SPECIFICATIONS

•OPERATING CONDITION

32-104 °F (0-40°C)
6-9
100mS/m or less
1-4mg O ₂ /Ձ
1,000mg/l or less
3,000mg/l or less
1,000mg/l or less
5 cP or less
1.05 or less
1% or less

SPECIFICATIONS

A. General

CNMJ series is the submersible sewage pumps, which has ShinMaywa original non-clog single-vane semi-open impeller. CNMJ impeller has helix shaped channel, and brand-new chopper mechanism. It makes overcome weakness about pass-through capability of semi-open impeller by the brand-new chopper mechanism. Generally, in a conventional pump which is employed semi-open impeller, if the gap between the suction port of the impeller and the casing is widened due to wear, the pump performance is decleased such as the flow rates and the pump efficiency. In the CNMJ series, the gap can be adjusted by inserting shims between the chopper plate and the pump housing. It makes the pump performance can be restored.

Pump system design shall include a guide rail system be such that the pump will be automatically connected to the discharge piping when lowered into place on the discharge connection. The pump shall be easily removable for inspection or service, requiring no bolts, nuts, or other fasteners to be disconnected, or the need for personnel to enter the wet well. The nameplate ratings of the motor shall be based on 104 °F (40°C) ambient environment and depth of 26 feet (8m). The motor and pump shall be designed, manufactured, and assembled by same manufacturer.

B. Manufacturer

ShinMaywa Industries, Ltd.

C. Pump Characteristics

Pumps shall conform to the following requirements: Number of units Design flow (GPM) Design TDH (ft) Minimum shut off head (ft) Synchronous Speed (RPM) 1800 Maximum HP 3HP, 5HP, 7.5HP, 10HP Minimum efficiency at design (%) Minimum power factor at design (%) Voltage / Hz / Phase

208/230V, 460V / 60Hz / 3

D. Pump Construction

Major parts of the pumping unit(s) including pump housing and impeller shall be manufactured from gray cast iron, ASTM A48-Class 35. Major parts of the submersible motor unit(s) include motor frame and oil casing shall be manufactured from gray cast iron, ASTM A48-Class 30. Casting shall have smooth surfaces devoid of blowholes or other casting irregularities. Units shall be furnished 150lb.flat face ANSI flange fitting. All exposed bolts and nuts shall be 304 stainless steel. All mating surface of major components shall be machined and fitting with NBR O-rings where watertight sealing required. Machining and fitting shall be such that sealing is accomplished by automatic compression of O-rings in two planes and O-ring contact is made on four surfaces without the requirement of specific torque limits. All metal surfaces coming into contact with the water, other than stainless steel or copper alloy, shall be coated by Epoxy paint.

SPECIFICATIONS

1. Impeller

CNMJ is employed the non-clog single-vane semi-open impeller which has helix shaped channel. The impeller(s) has good pump characteristics with no overload in its operation range. It can also pass-through 3 inch spherical solid, qualifying it as a "true" non-clog by definitions.

2. Chopper Plate

The design shall be replaceable chopper plate to maintain pass-through capability.

3. Mechanical Seal

One coil double design mechanical seal operating in an oil bath shall be provided on all units. The mechanical seal shall be located in the oil chamber to prevent the entry of foreign materials in to mechanical seal area and also mechanical seal's NBR elastomer shall be designed for submersible pumps to increase sealing quality. Lower side seal faces and Upper side seal faces (All seal faces) material shall be silicon carbide. These feature makes high reliable than popular design mechanical seal.

E. Motor construction

The pump motor shall be an air filled single phase induction type with a squirrel cage rotor, shell type design. Stator windings shall be copper, insulated with moisture resistance Class F insulation, rated for 311 °F (155°C). The stator shall be dipped and baked in Class F varnish and heat shrank fitted into the stator housing. Rotor bars and short circuit rings shall be manufactured of cast aluminum. Motor Shaft shall be made from JIS420 J2 stainless steel. The pump shaft shall rotated on two bearing. Motor bearings shall be permanently grease lubricated. The upper bearing and lower bearing shall be a single deep groove ball bearing. Motor service factor shall be 1.15. Motor capable 10 starts per hour. The motor shall be designed for operation up to 104 °F (40°C) ambient and with a temperature rise not to exceed 70 degree. The motor shall have a voltage tolerance of plus or minus 10%. The motor shall be non-overloading the entire specified range of operation. Motor over temperature protection shall be provided by thermal protector (auto reset type).

Leakage probe detector is available as an option to provide mechanical seal failure protection.

SPECIFICATIONS

F. Cable

Power cable jacket is made of polyvinylchloride (PVC) or ethylene-propylene rubber (2PNCT), designed for submerged applications. Standard power cable length is 50ft (15m). Cable entry of submersible motor shall prevent incursion of the pumpage into the motor due to the phenomena knows as "WICKING", a portion of each conductor is stripped back exposing the copper conductor. The cable is placed in a mold and is molded into one piece. The mold rubber seals the end of the power cable and flows in between each strand of conductor. This feature prevents "WICKING", through the fiber reinforcement found in standard submersible cable, and through the strands of the conductor itself.

G. Guide rail system

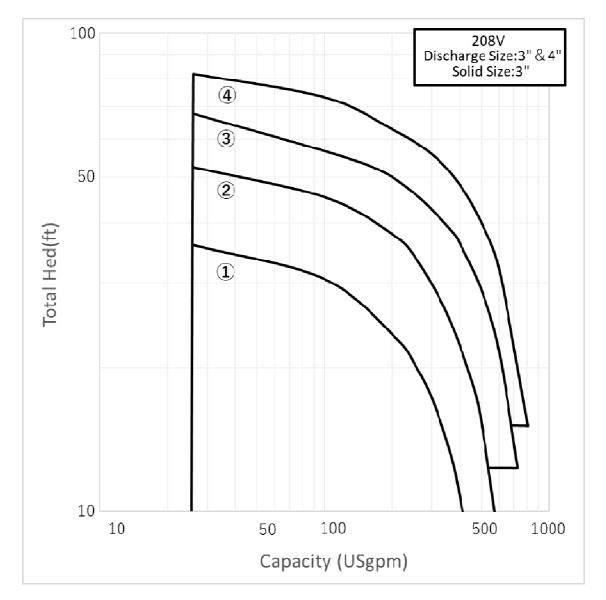
Design shall include two 304 stainless steel guide rails to mount directly to the Connection Elbow, at the floor of the wetwell and to a guide rail bracket at the top of the wetwell below the hatch opening. Intermediate guide brackets are recommended for rail lengths over 15 feet.

Guide rails are not part of the pump package and shall be supplied by others.

The Connection Elbow shall be manufactured of cast iron, ASTM A48 Class 30. It shall be designed to adequately support the guide rails, discharge piping, and pumping unit under both static and dynamic loading conditions with support legs that are suitable for anchoring it to the wetwell floor. The face of the inlet Connection Elbow flange shall be perpendicular to the floor of the wetwell. The discharge flange of the Connection Elbow shall conform to ANSI B16.1 Class 125.

The pump design shall include an integral self-aligning slide bracket. Sealing of the pumping unit to the Connection Elbow shall be accomplished by single, linear, downward motion of the pump. The entire weight of the pump unit shall be guided to and wedged tightly against the inlet flange of the Connection Elbow, making metal-to-metal contact with the pump discharge forming a seal without the using bolts, gaskets or O-rings. Lifting chain shall be galvanized (stainless steel) suitable for removing and installing the pump unit.

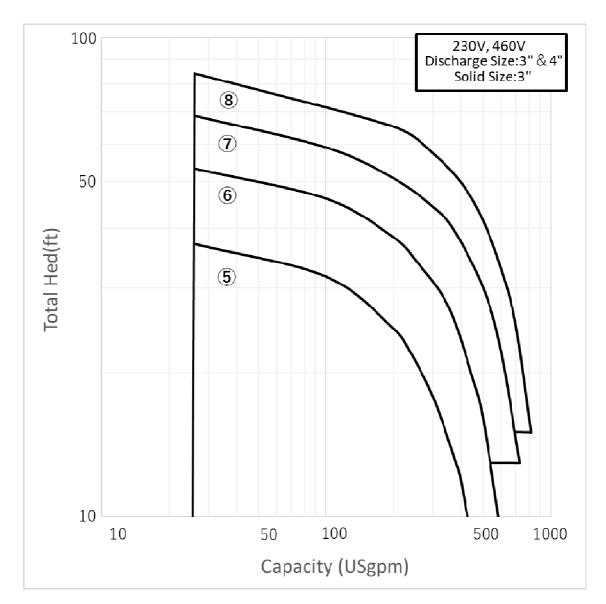
DRAWING LIST (Performance Curve)

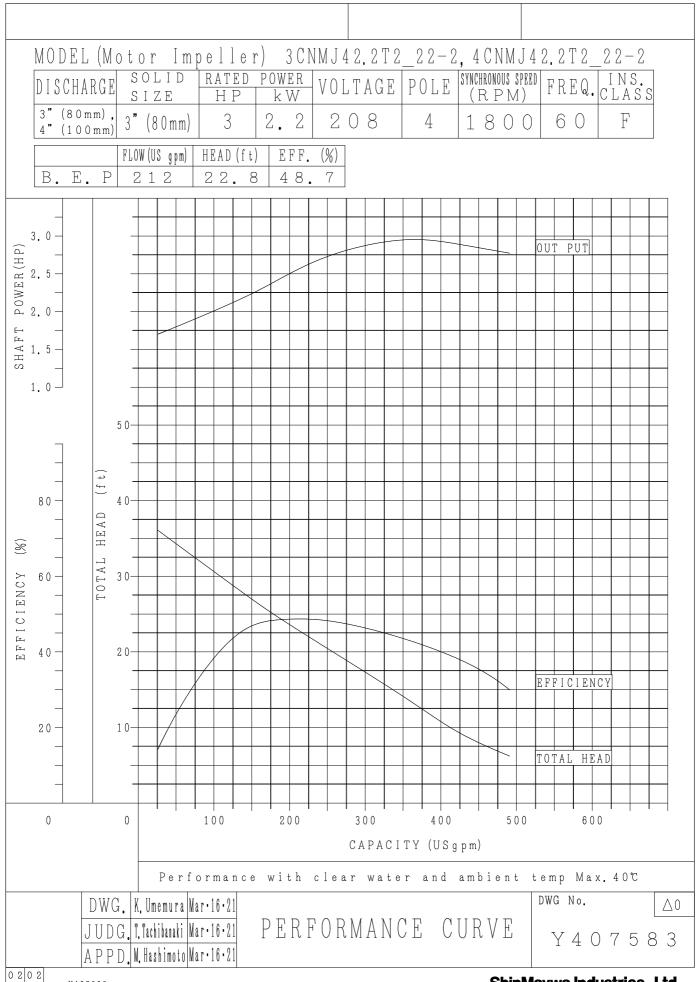

Performance Curve

Discharge	Solid	Model		HP	Voltage			
Discharge	Size	Motor	Impeller	пг	208V	230V, 460V		
3"	3"	3CNMJ42.2T *	22-2	3	Y407583	Y407584		
3	(80mm)	3CNMJ43.7T *	37-2	5	Y407585	Y407586		
		4CNMJ42.2T *	22-2	3	Y407583	Y407584		
4"	3"	4CNMJ43.7T *	37-2	5	Y407585	Y407586		
4	(80mm)	4CNMJ45.5T *	55-2	7.5	Y407587	Y407588		
		4CNMJ47.5T *	75-2	10	Y407589	Y407590		

***** Voltage: 2 means 208/230V, 3 means 460V.

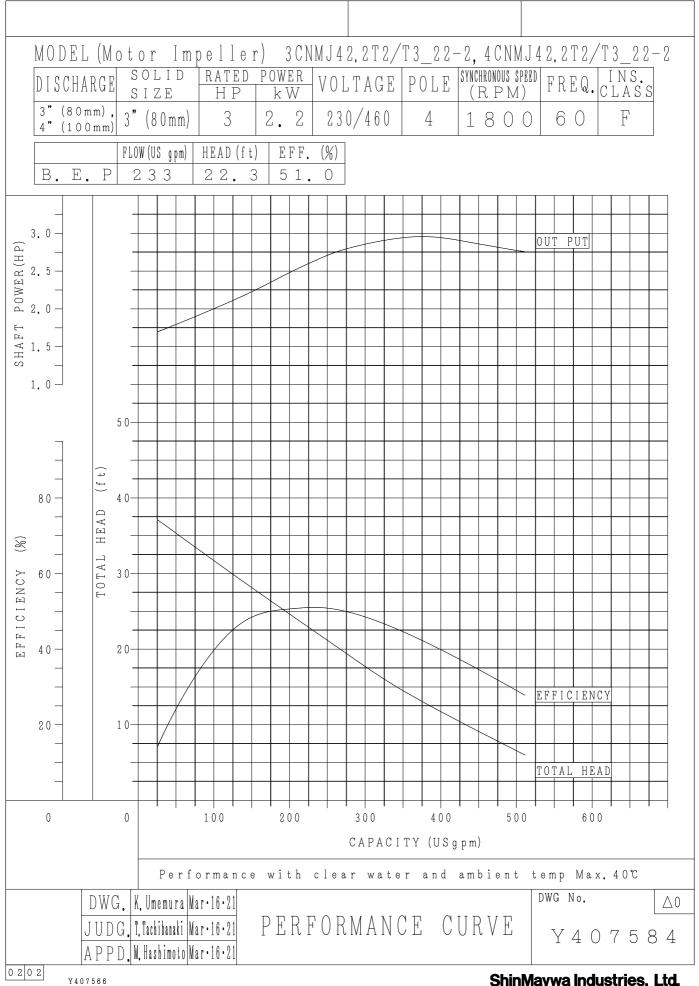
PERFORMANCE CURVE (208V)


Diacharga	Solid	Model		HP	208V		
Discharge	Size	Motor	Impeller	пг	Curve No.	Drawing	
3"	3"	3CNMJ42.2T2	22-2	3	1	Y407583	
3	(80mm)	3CNMJ43.7T2	37-2	5	2	Y407585	
		4CNMJ42.2T2	22-2	3	1	Y407583	
A ''	3"	4CNMJ43.7T2	37-2	5	2	Y407585	
4"	(80mm)	4CNMJ45.5T2	55-2	7.5	3	Y407587	
		4CNMJ47.5T2	75-2	10	4	Y407589	

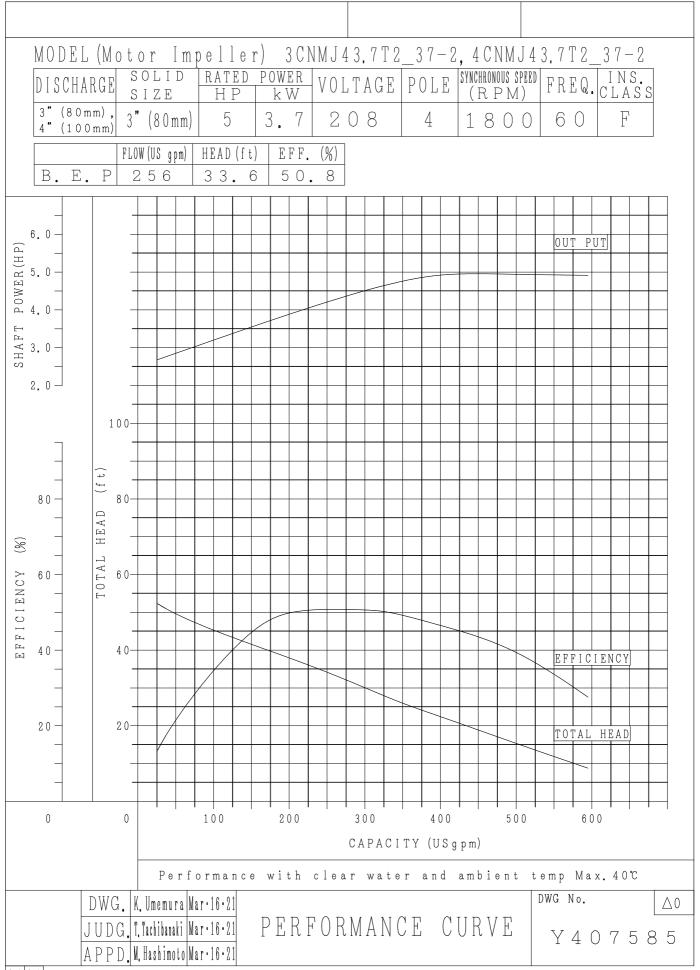

230V, 460V Solid Model Discharge ΗP Size Impeller Curve No. Drawing Motor 3" 22-2 (5) 3CNMJ42.2T* 3 Y407584 3" 6 (80mm) 37-2 5 Y407586 3CNMJ43.7T * 4CNMJ42.2T * 22-2 3 5 Y407584 3" 4CNMJ43.7T* 37-2 5 6 Y407586 4" (80mm) 4CNMJ45.5T* 55-2 7.5 7 Y407588 (8) 10 Y407590 4CNMJ47.5T* 75-2

PERFORMANCE CURVE (230V, 460V)

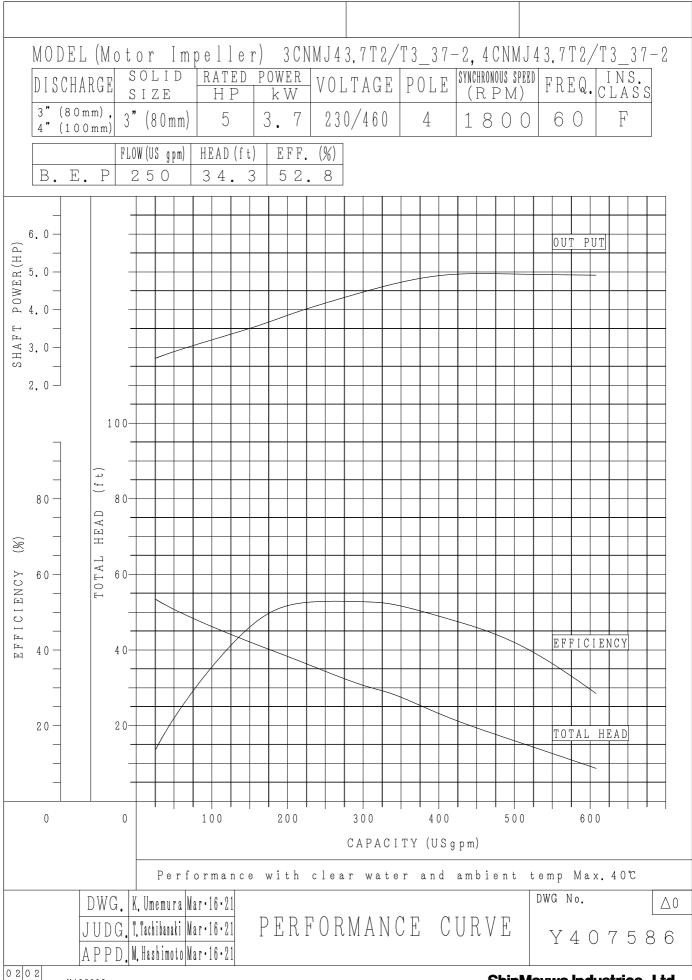
***** Voltage: 2 means 208/230V, 3 means 460V.



Y407565


(S S)

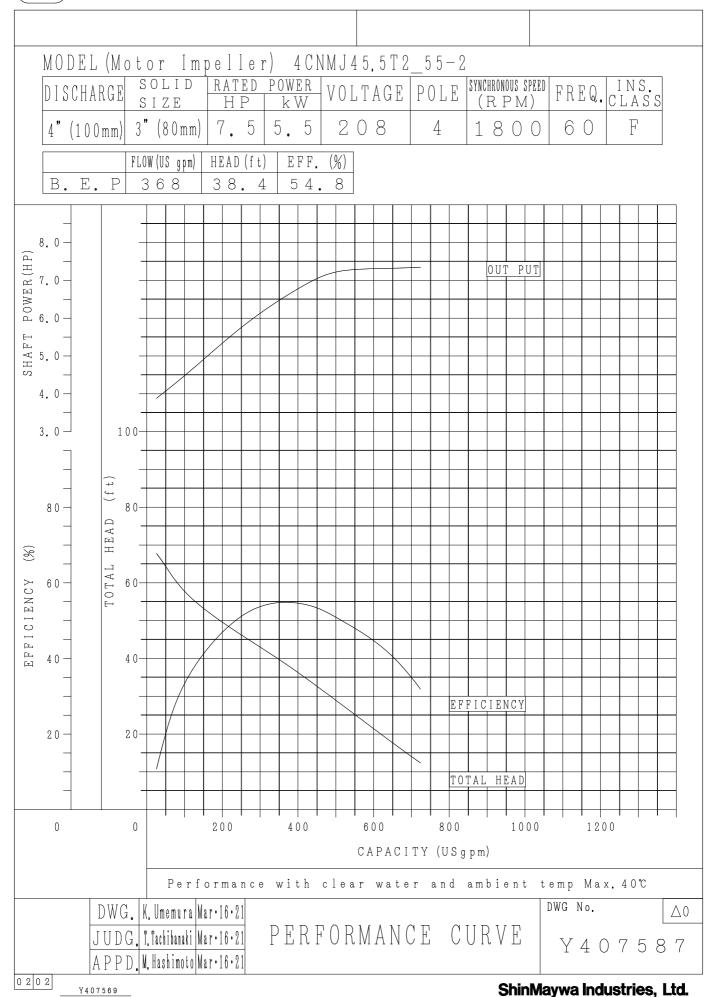
ShinMaywa



(S S)

ShinMaywa

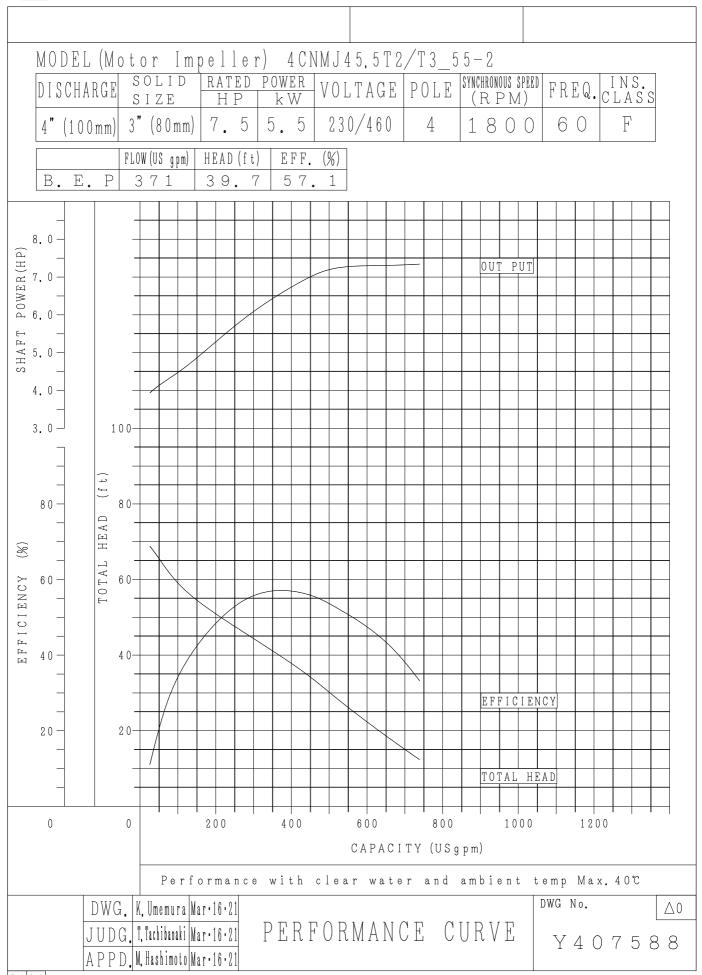
0202 Y407567



 $\overline{}$

SS)

Y407568

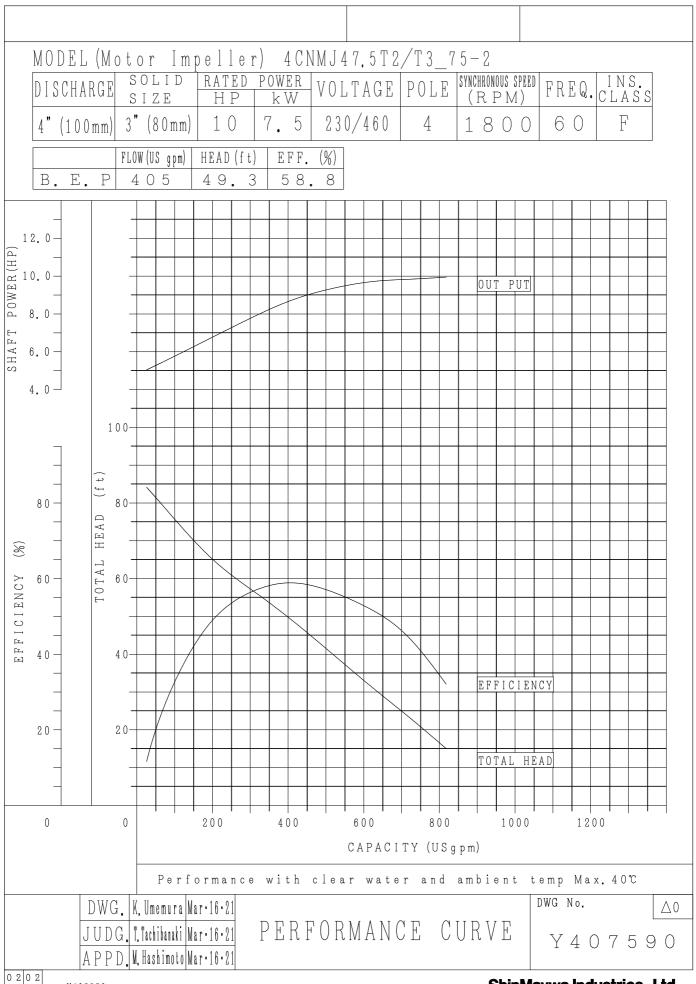

ShinMaywa Industries, Ltd.

(SS)

(S S)

ShinMaywa

0 2 0 2 Y407570


	M 0 1) E L	(M	o t	o r		m	рe	1	l e	r)	Ĺ	1 C	NM	J	17,	5 '	Γ2	_7	5 -	- 2											
	DIS	CHA	RGE	' S	50I 512	LI ZE	D	R	A T H	E D P	P	0W) k V	E R N	V	01	JT.	AG	E	P ()[E	SYNC (HRON R I	0US ⊃ ∿	SPEED 1)	FF	R E	Q.	I I C L	NS. AS	S	
	4 "	(100) m m)				ım)		1 (5		2	0	8			4					0	6	6 (F	_	
				-)W (U				E A D	(f t	;)	E	FF.	. ()	%)																	
	Β.	E.	P		10				8	•	1	5	6	•	5																	
	_	-		_																												
1 (д н	2.0-	-		_																												
드 노 1 드 >				_																		0 U 1	ΓP	UΤ								
л О	8.0-			_																						_		_				
J I A H C	- 6.0-	-		_																												
	- 4.0-			-																												
	·		4	-																						-						
	_	1	1	.00-																												
	_	-	(ft)	_																												
	80-			80-																												
(%)	_	_	HEAD	_			$\overline{\langle}$																									
CΥ	- 60-	-	ΤΑL	- 60-				$\overline{}$																								
I EN(_		Τ0	-							$\left \right $				/																	
EFFICIEN	-	-		-															<u> </u>													
더	40- -	-		40-			7								$\langle $					$\overline{\langle}$		ה ה ו	210	וסו	V C Y							
	_	-		_													\geq															
	20-			20-																												
	_			_	/																	TOT	ΓAL	HI	EAD	+		-				
				_																												
	0			0				20	00			4 (00				00 00	Сī	ΤV	80 (U		nm)	10	00			120	0			
						P۵	r f	or	me	nc	<u>а</u> ,	N 1 4	t h	c 1	<u>р</u> а									- n -	t t	e m r	ר א א ר	10 -	- <i>1</i>	0 °C		
			DW	G. H								(V 1)	- 11	U 1			vv a		1	u 11 (u i	u 111		- 11		DWG			• 4		[]	70
				G.						-	P	E	R	F () R	M	Al) (E		CI	JF	{ V	E		V	7 Δ	. ∩	- 7	5		
		A	A P P	D.N	l, Has	himo	t o M	ar•1	6•2	1																						
2 (J Z _	Y407	571																				S	Shi i	nMa	yw	a l i	ndu	ıstı	ries ,	, Lte	d.

(SS)

ShinMaywa

(ss)

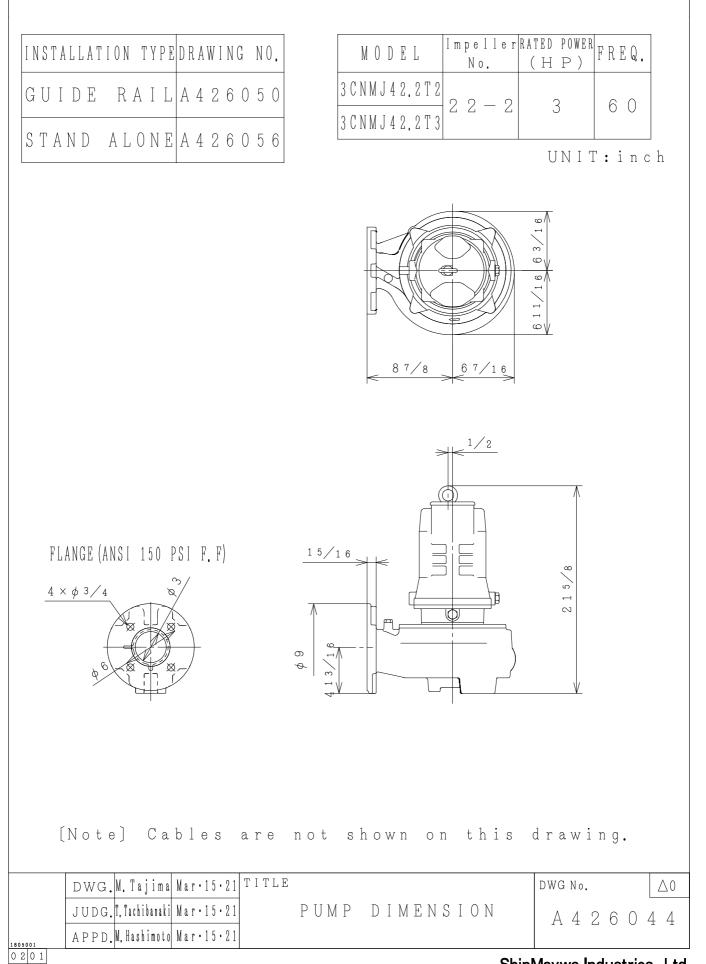
ShinMaywa

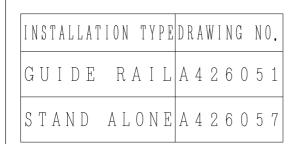
Y407572

DRAWING LIST (Pump Dimensions)

Pump Dimensions

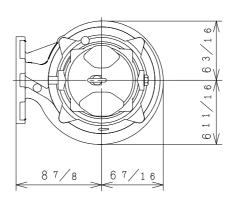
Discharge	Solid	Model		HP	
Discharge	Size	Motor	Impeller	пг	Drawing No.
0 "	3"	3CNMJ42.2T *	22-2	3	A426044
3"	(80mm)	3CNMJ43.7T *	37-2	5	A426045
		4CNMJ42.2T *	22-2	3	A426046
4"	3"	4CNMJ43.7T *	37-2	5	A426047
4	(80mm)	4CNMJ45.5T *	55-2	7.5	A426048
		4CNMJ47.5T *	75-2	10	A426049

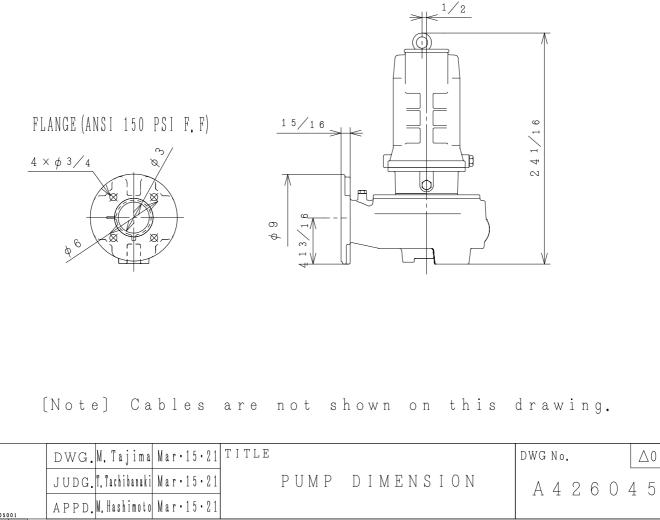

Pump Dimensions for Guide Rail Installation


Discharge	Solid	Model		HP	Drawing No.	Guide Rail Type	
Discharge	Size	Motor	Impeller	ΠF	Drawing No.	Guide Rall Type	
3"	3"	3CNMJ42.2T *	22-2	3	A426050	P3BY	
3	(80mm)	3CNMJ43.7T *	37-2	5	A426051	FJDT	
		4CNMJ42.2T *	22-2	3	A426052		
4"	3"	4CNMJ43.7T *	37-2	5	A426053	P4CY	
4	(80mm)	4CNMJ45.5T *	55-2	7.5	A426054	F401	
		4CNMJ47.5T *	75-2	10	A426055		

Pump Dimensions for Stand Alone Installation

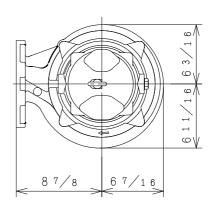
Disebargo	Solid	Model		HP	Drowing No.	Stand Type	
Discharge	Size	Motor	Impeller	ΠF	Drawing No.	Stand Type	
3"	3"	3CNMJ42.2T *	22-2	3	A426056		
3	(80mm)	3CNMJ43.7T *	37-2	5	A426057		
		4CNMJ42.2T *	22-2	3	A426058	F3/F4	
A "	3"	4CNMJ43.7T *	37-2	5	A426059	(M78967-A)	
4"	(80mm)	4CNMJ45.5T *	55-2	7.5	A426060		
		4CNMJ47.5T *	75-2	10	A426061		

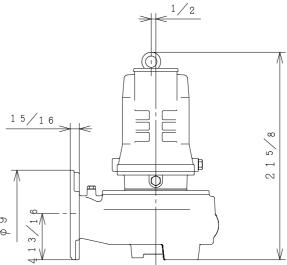

***** Voltage: 2 means 208/230V, 3 means 460V.



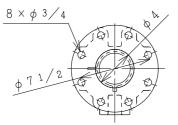
MODEL	Impeller No.	RATED POWER (HP)	FREQ.
3 C N M J 4 3, 7 T 2	37-9	Б	6.0
3 C N M J 4 3, 7 T 3		.)	0 0

UNIT: inch



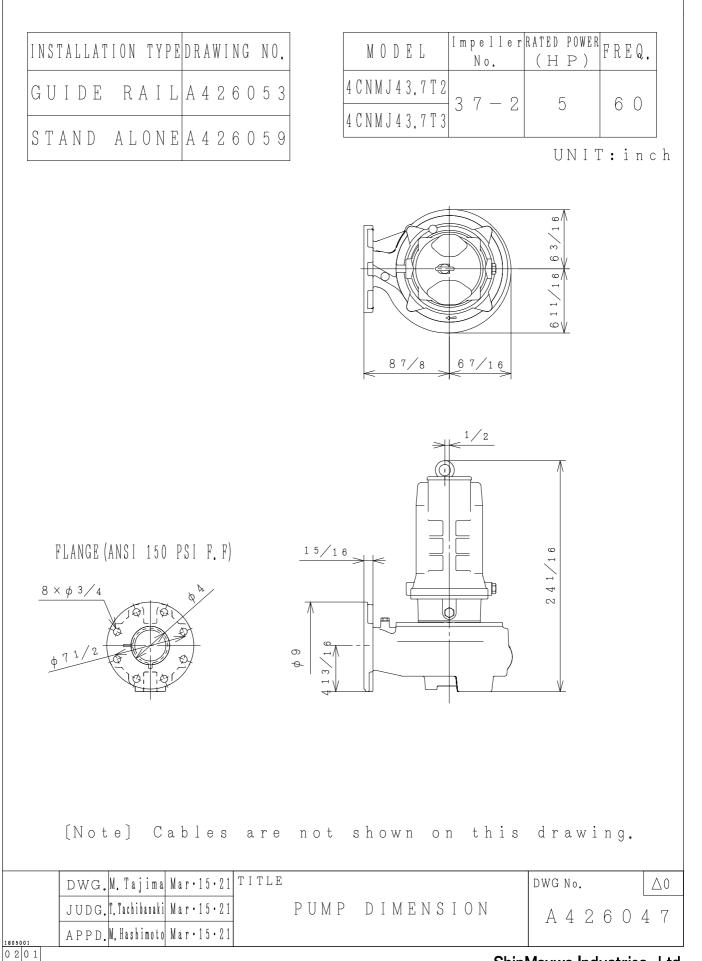

1805001 0201

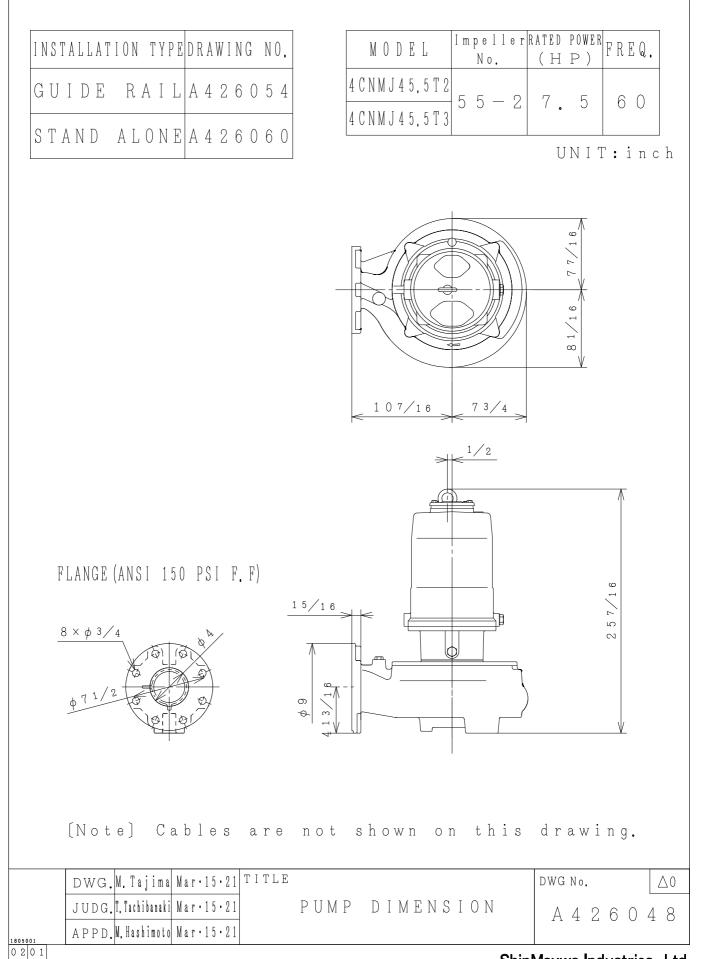
I N S T A L L A T	ION TYPE	DRAWING	N0.
GUIDE	RAIL	A4260	52
STAND	ALONE	A4260	58


MODEL	Impeller No.	RATED POWER (HP)	FREQ.
4 C N M J 4 2, 2 T 2	22 - 2	2	6.0
4 C N M J 4 2.2 T 3		3	00

UNIT: inch

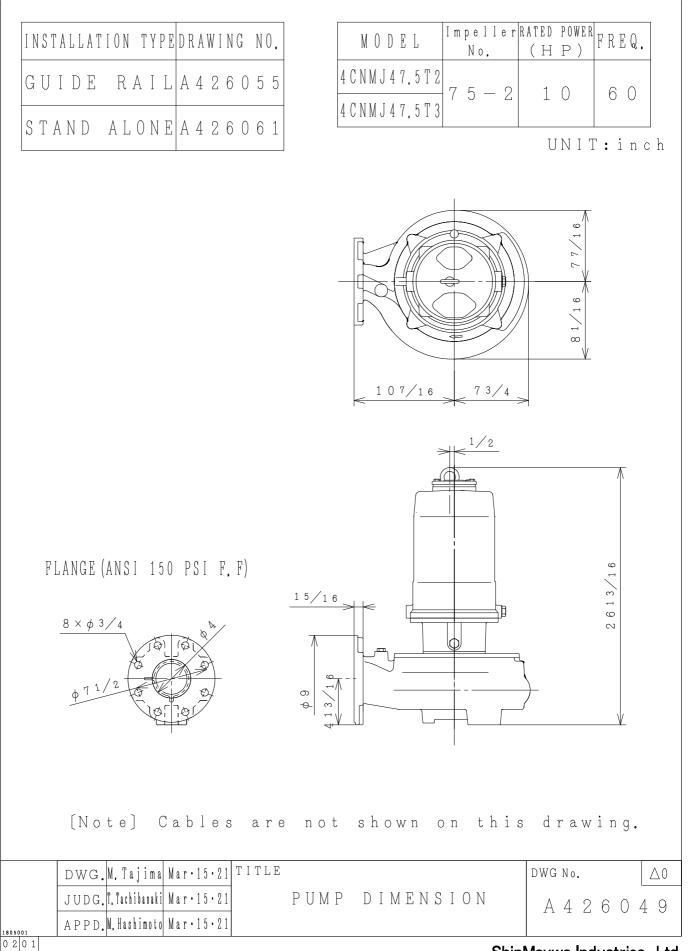
FLANGE (ANSI 150 PSI F.F)

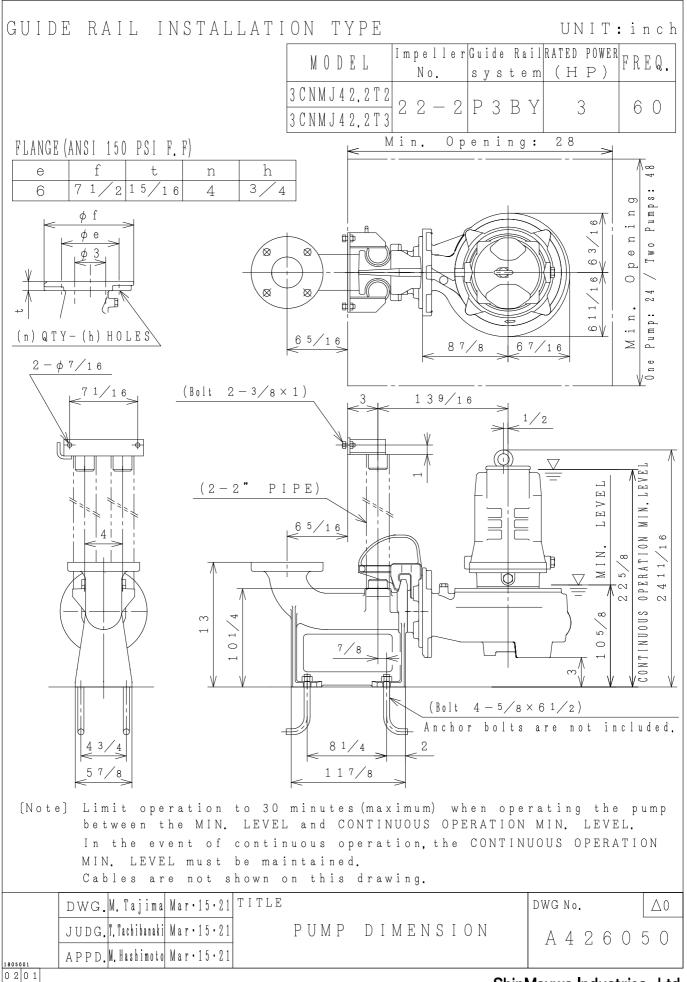


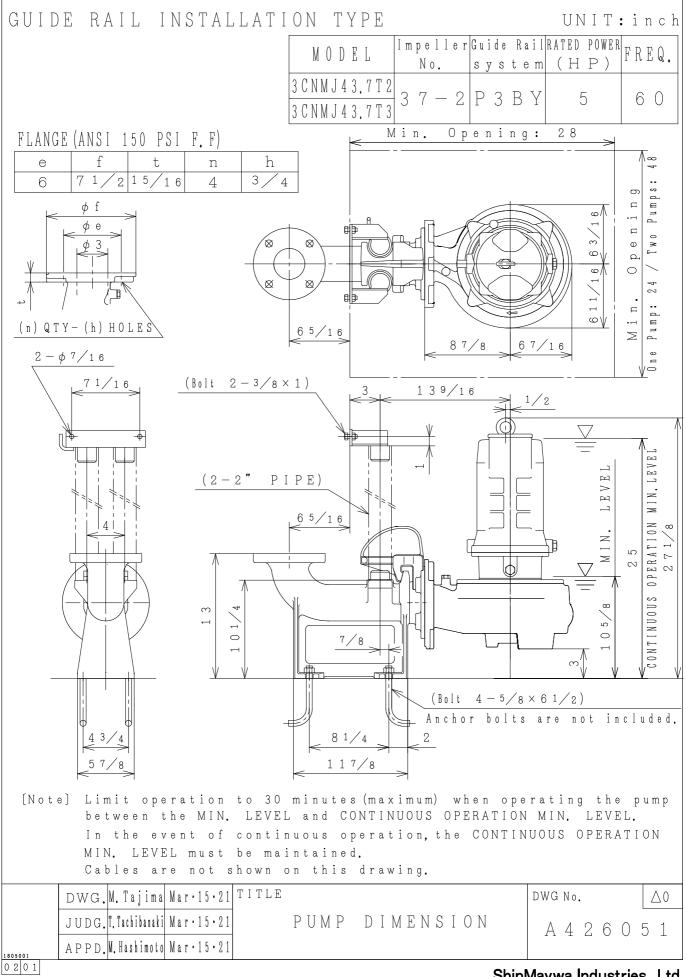

6 ф

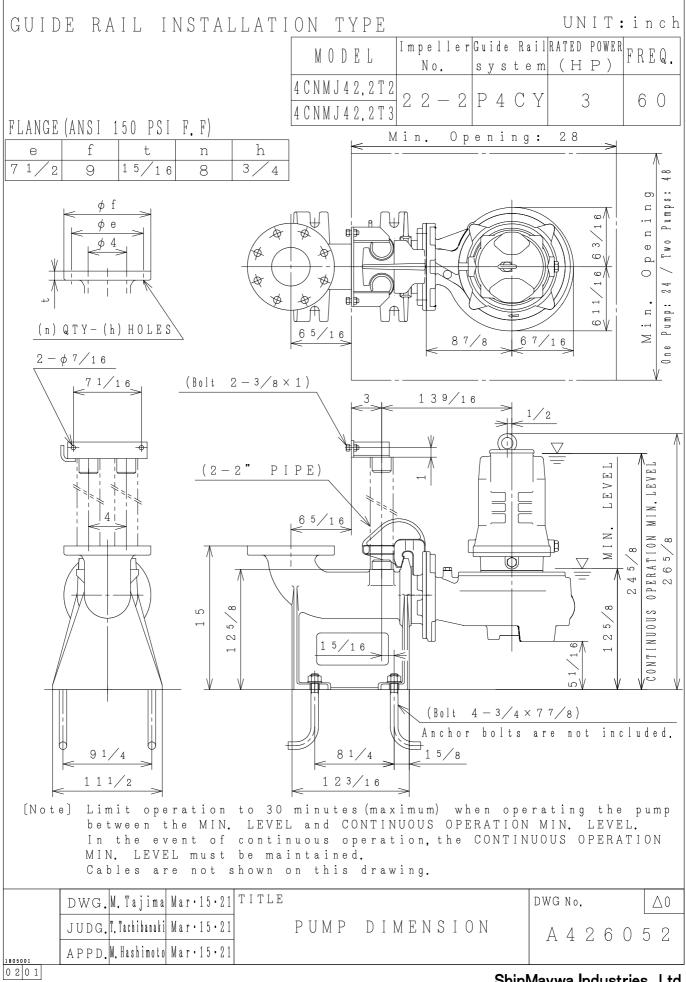
[Note] Cables are not shown on this drawing.

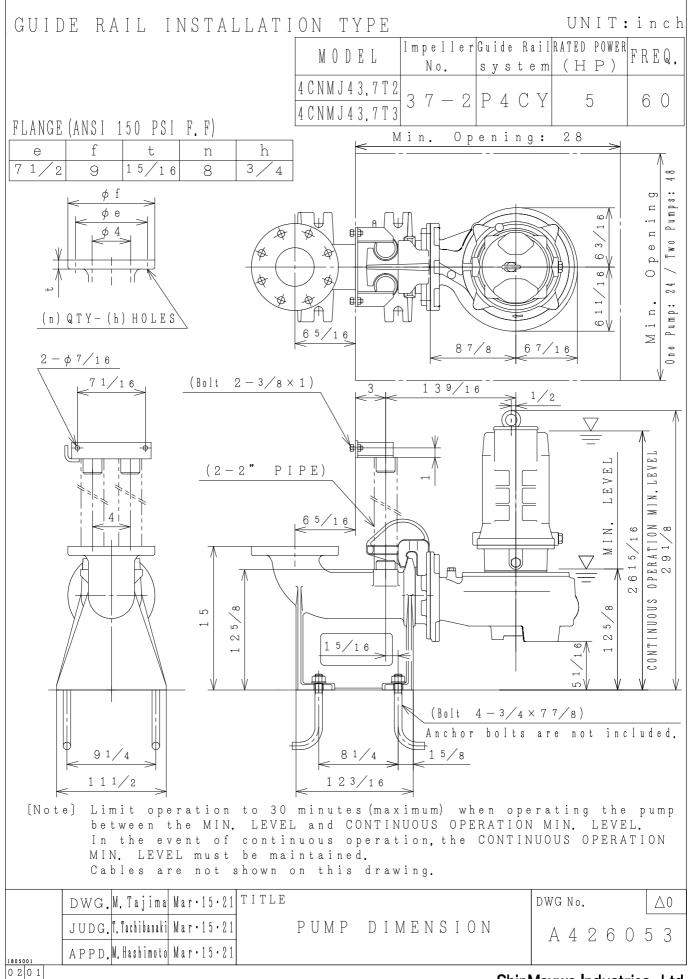
	DWG. M. Tajima Mar·15·21	TITLE	DWG No.	∆0
	JUDG. T. Tachibanaki Mar • 15 • 21	PUMP DIMENSION	A 4 2 6 0 4	- 6
1805001	APPD. M. Hashimoto Mar • 15 • 21			
0201	ShinMaywa Industries I td			

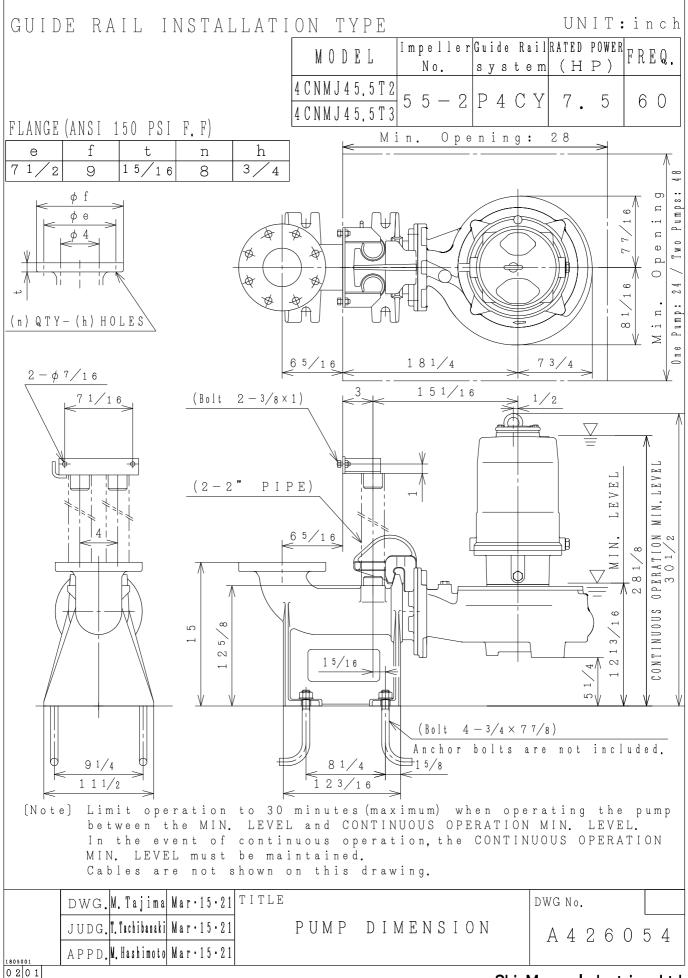


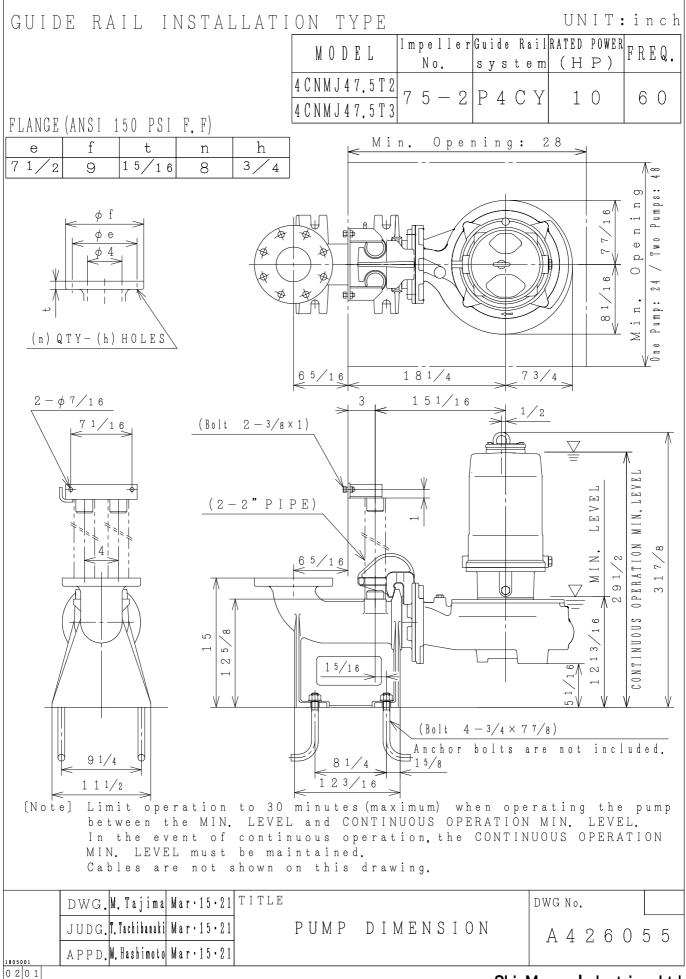


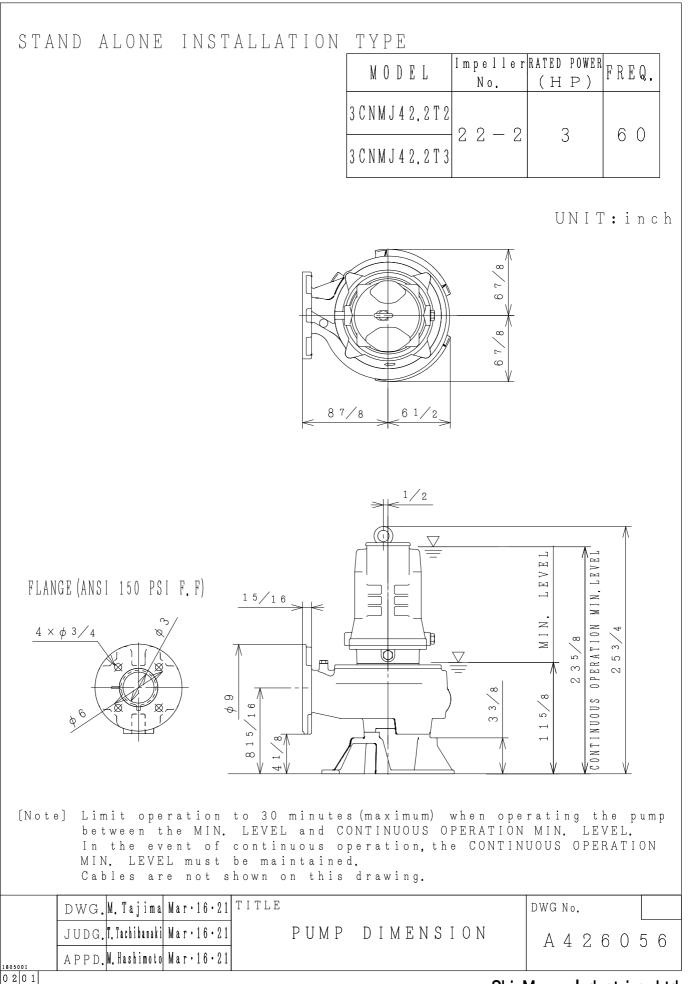

SS

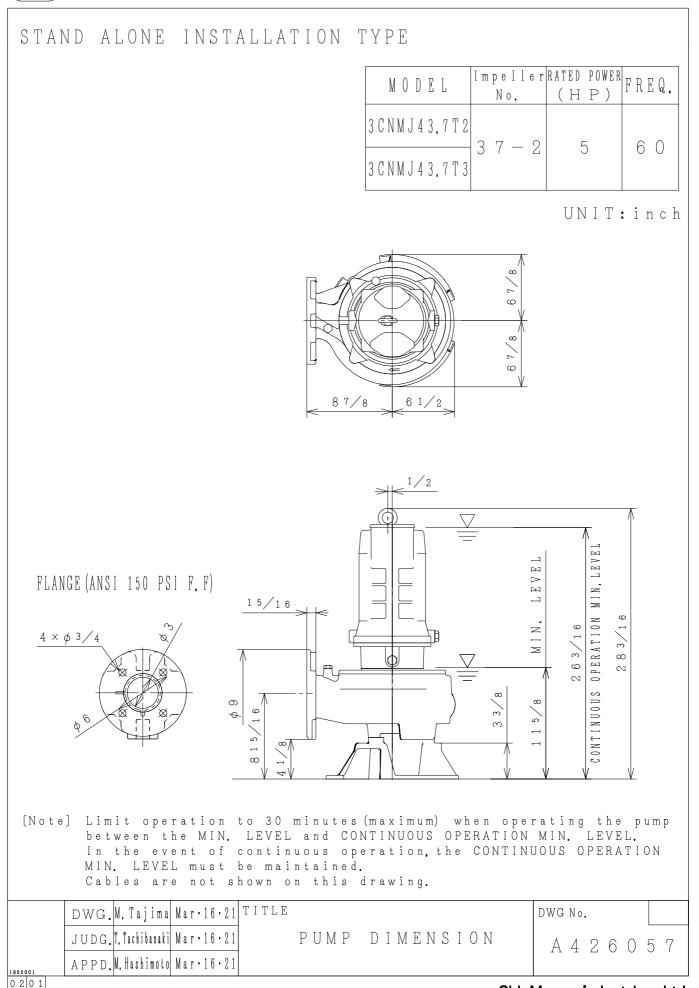



SS

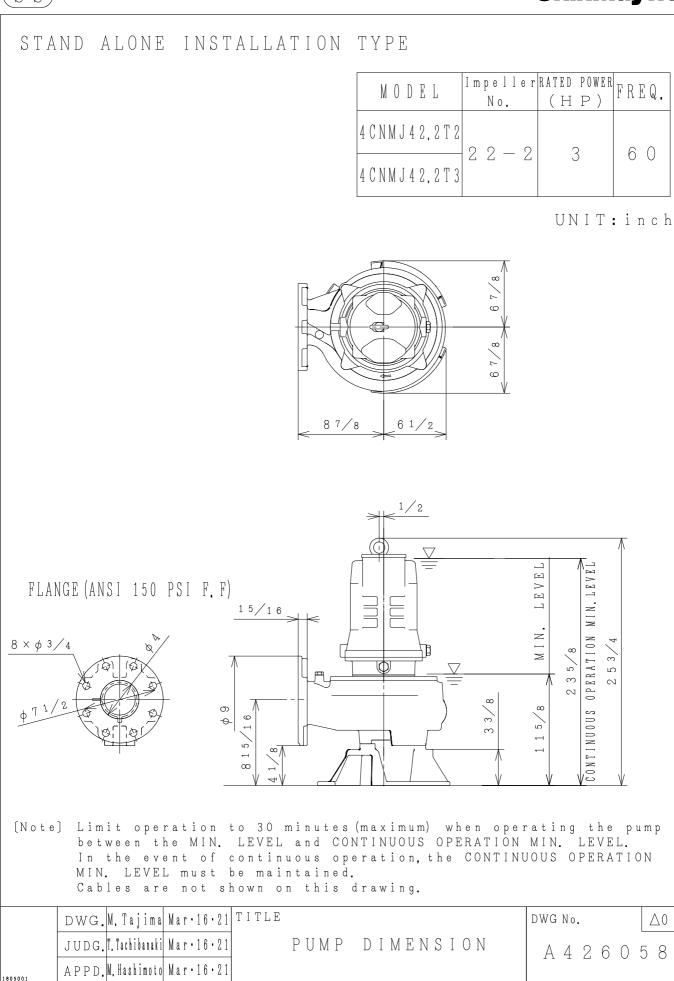

SS

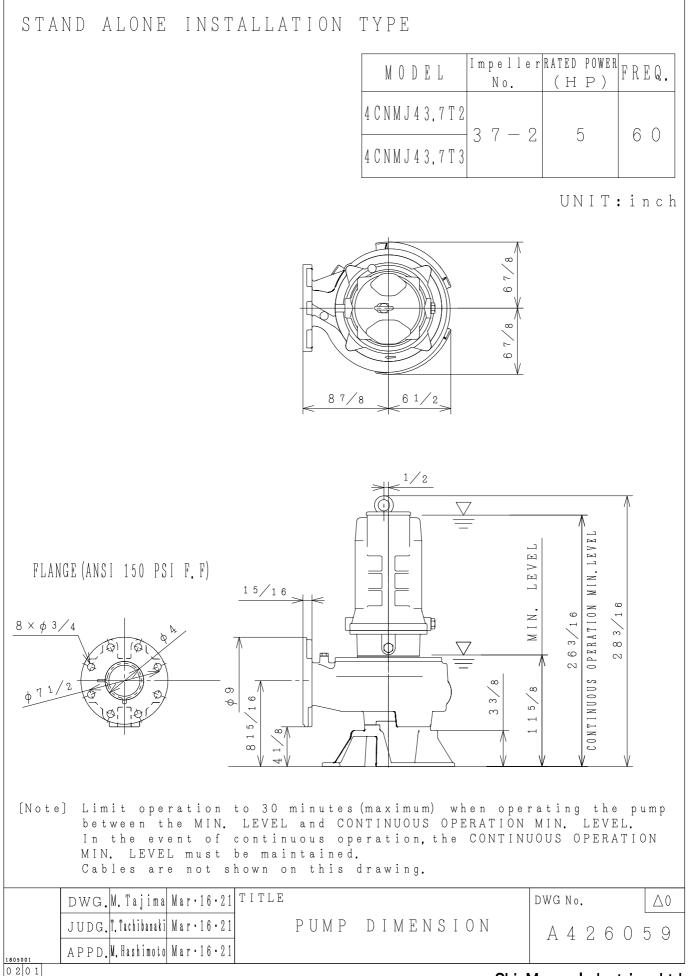


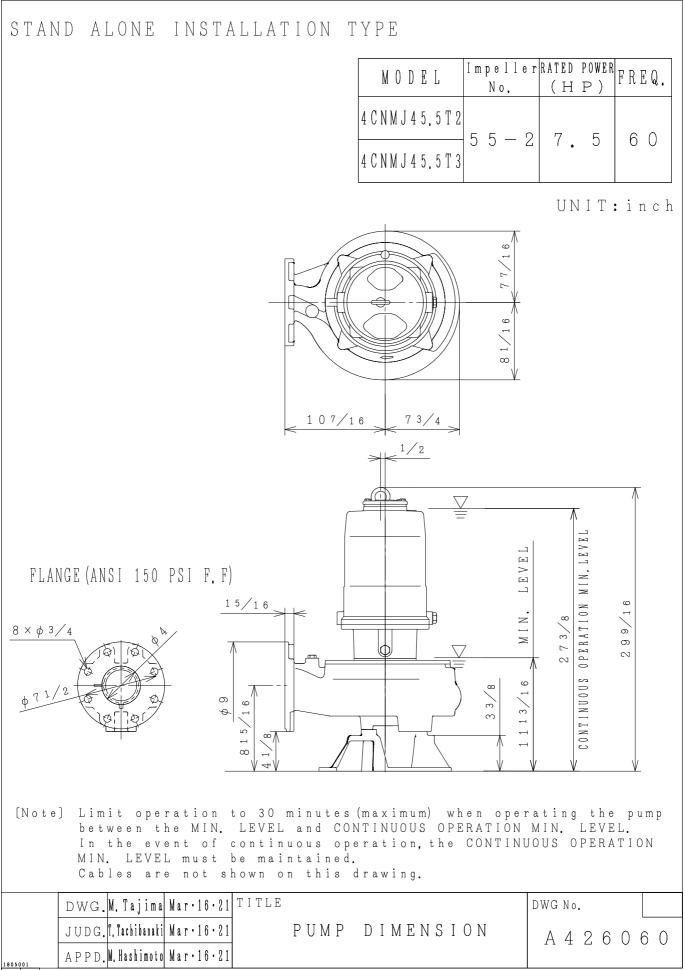

SS)

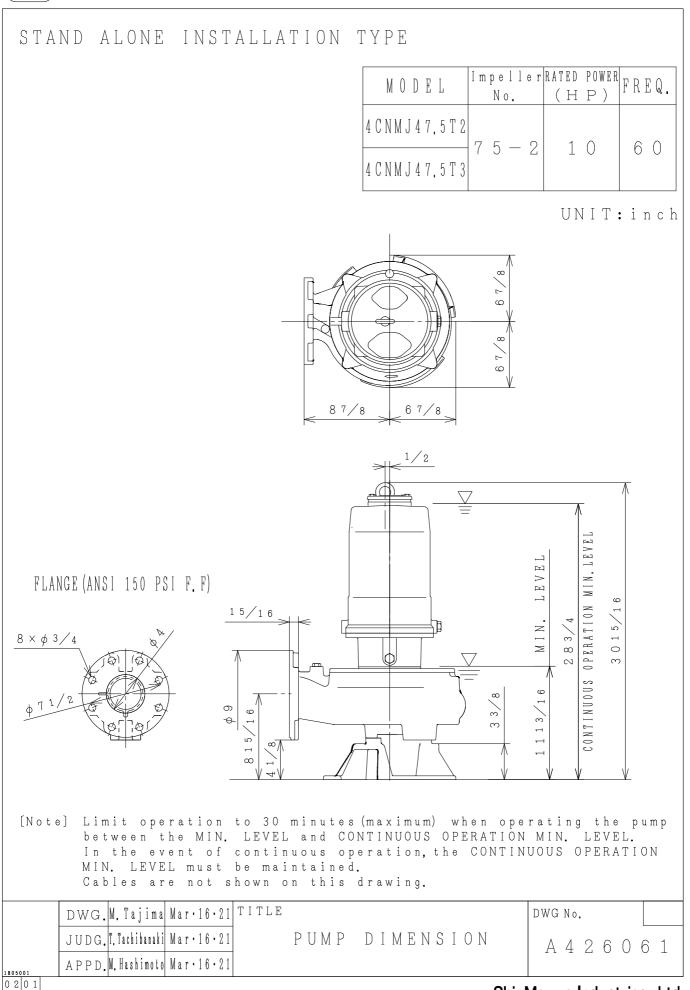


(SS)








(SS)

$\left(\begin{array}{c} S & S \end{array} \right)$

DRAWING LIST (Section View and Material List)

	Solid	Solid Model			Guide Rail Installation Pump			
Discharge	Solid	Motor	Impollor	ΗP	Section View	Material List		
	Size	Motor Impeller			Section view	208/230V	460V	
3"	3"	3CNMJ42.2T *	22-2	3				
5	(80mm)	3CNMJ43.7T *	37-2	5		A426064		
		4CNMJ42.2T *	22-2	3	1426062	A420004	A 406064	
4"	3"	4CNMJ43.7T *	37-2	5	A426062		A426064	
4	(80mm)	4CNMJ45.5T *	55-2	7.5		A426118		
		4CNMJ47.5T *	75-2	10		A420110		

Section View and Material List for Pump

Section View and Material List for Stand Alone Installation

	Colid	Model			Stand Alone Installation Pump			
Discharge	Solid Size	Motor	Impollor	HP	Section View	Material List		
	Size	Motor Impeller			Section view	208/230V	460V	
3"	3"	3CNMJ42.2T *	22-2	3				
3	(80mm)	3CNMJ43.7T *	37-2	5		A426065		
		4CNMJ42.2T *	22-2	3	A426063	A420005	A426065	
4"	3"	4CNMJ43.7T *	37-2	5	A420003		A420000	
4	(80mm)	4CNMJ45.5T *	55-2	7.5		A426119		
		4CNMJ47.5T *	75-2	10		A420119		

***** Voltage: 2 means 208/230V, 3 means 460V.

MODEL	RATED POWER (HP)		
3 C N M J 4 2. 2 T 2			
3 C N M J 4 2. 2 T 3	}		
4 C N M J 4 2. 2 T 2 4 C N M J 4 2. 2 T 3	- $-$		
4 C N M J 4 2. 2 1 3 3 C N M J 4 3. 7 T 2)		
3 C N M J 4 3. 7 T 3		(3)	
4 C N M J 4 3.7 T 2			
4 C N M J 4 3. 7 T 3	}		(2)
4 C N M J 4 5. 5 T 2 4 C N M J 4 5. 5 T 3			
4 C N M J 4 7. 5 T 2	2		(6)
4 C N M J 4 7. 5 T 3			
	Г		
	ŕ		
	(74	35	
DWG.M	l. Tajima Mar·16·2	1 TITLE	DWG No.
JUDG.Ï.	.Tachibanaki Mar•16•2	PUMP SECTION	A 4 2 6 0 6 2
APPD.	.Hashimoto Mar•16•2		
		Sh	inMaywa Industries, Li

No.	Denomination	Material
1	Cable(power)	VCT PVC insulated PVC sheathed cable
2	Cable entry	FC200(ASTM A48 Class 30) Gray Iron Casting
3	Eyebolt	SUS304 series (ASTM S30400SERIES) Stainless Steel
6	Stator	
7	Rotor Assembly	Shaft=SUS420J2 Stainless Steel
8	Thermal protector	Auto Reset Type Motor Protector
10	Stator Casing	FC200(ASTM A48 Class 30) Gray Iron Casting
11	Ball Bearing(Upper)	
12	Ball Bearing(Lower)	
13	Bearing Cover	FC200(ASTM A48 Class 30) Gray Iron Casting
14	Oil housing	FC200(ASTM A48 Class 30) Gray Iron Casting
15	Impeller	FC250(ASTM A48 Class 35) Grav Iron Casting
17	Pump Casing	FC250(ASTM A48 Class 35) Gray Iron Casting
18	Mechanical Seal	Upper : SiC/SiC Lower : SiC/SiC
19	Oil seal	Acrylonitrile Butadiene Rubber(NBR)
23	0il	Turbine Oil #32
24	Air Valve	Locating Pin : Polyethylene Ball: Acrylonitrile Butadiene Rubber(NBR)
28	Mechanical Seal Bracket	FC200(ASTM A48 Class 30) Gray Iron Casting
32	Equalizer	Acrylonitrile Butadiene Rubber(NBR)
35	Shim	Polyethylene
74	Chopper plate	SUS304 series(ASTM S304SERIES) Stainless Steel
110	Oil Plug	SUS304 series(ASTM S304SERIES) Stainless Steel

	DWG.	S.Ohnishi	Mar·10·2021	TITLE	DWG No.	Δ0
	JUDG.	T. Tachibanak	Mar·10·2021	MATERIALS LIST	A426064	
1805001	APPD.	M. Hashimoto	Mar·10·2021			
02 01				ShinM	laywa Industries	,Ltd.

No.	Denomination	Material
1	Cable(power)	2 P N C T EPR insulated PCP sheathed cable
2	Cable entry	FC200(ASTM A48 Class 30) Gray Iron Casting
3	Eyebolt	SUS304 series(ASTM S30400SERIES) Stainless Steel
6	Stator	
7	Rotor Assembly	Shaft=SUS420J2 Stainless Steel
8	Thermal protector	Auto Reset Type Motor Protector
10	Stator Casing	FC200(ASTM A48 Class 30) Gray Iron Casting
11	Ball Bearing(Upper)	
12	Ball Bearing(Lower)	
13	Bearing Cover	FC200(ASTM A48 Class 30) Gray Iron Casting
14	Oil housing	FC200(ASTM A48 Class 30) Gray Iron Casting
15	Impeller	FC250(ASTM A48 Class 35) Gray Iron Casting
17	Pump Casing	FC250(ASTM A48 Class 35) Gray Iron Casting
18	Mechanical Seal	Upper : SiC/SiC Lower : SiC/SiC
19	Oil seal	Acrylonitrile Butadiene Rubber(NBR)
23	Oil	Turbine Oil #32
24	Air Valve	Locating Pin: Polyethylene Ball: Acrylonitrile Butadiene Rubber(NBR)
28	Mechanical Seal Bracket	FC200(ASTM A48 Class 30) Gray Iron Casting
32	Equalizer	Acrylonitrile Butadiene Rubber(NBR)
35	Shim	Polyethylene
74	Chopper plate	SUS304 series(ASTM S304SERIES) Stainless Steel
110	Oil Plug	SUS304 series(ASTM S304SERIES) Stainless Steel

02 01	02 01 ShinMaywa Industries,Ltd.							
1805001	APPD.	M.Hashimoto	Mar·10·2021					
	JUDG.	T. Tachibanak	Mar·10·2021	MATERIALS LIST	A426118			
	DWG.	S.Ohnishi	Mar·10·2021	TITLE	DWG No.	∆0		

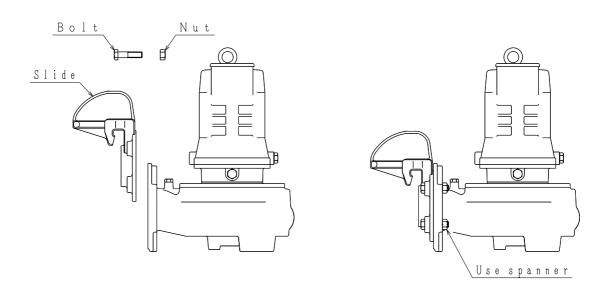
MODEL NICOMULE. 217 3CNMULE. 217 3 4CNMULE. 217 3 3CNMULE. 217 5 4CNMULE. 217 10 10 10 12 10 13 11 14 23 19 14 24 13 19 14 24 23 13 15 14 15 15 15 16 17 17 23 18 21 19 15 10 16 17 25 <		אייני איי				
3 C NN J42, 213 3 4 C NN J42, 213 3 3 C NN J42, 213 3 3 C NN J43, 712 5 3 C NN J43, 713 5 1 C NN J45, 512 7.5 3 C NN J45, 513 7.5 3 C NN J47, 513 10 1 0 10 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Image: Construction of the second		\neg \prec \downarrow		\frown		
4 CNN J 42, 2T3 3 3 CNN J 43, 7T2 5 3 CNN J 43, 7T3 5 4 CNN J 43, 7T3 5 4 CNN J 43, 7T3 7 4 CNN J 47, 5T2 1 1 0 <td< th=""><th></th><th>2</th><th></th><th>(3)</th><th>I</th><th>$\begin{pmatrix} 1 \end{pmatrix}$</th></td<>		2		(3)	I	$\begin{pmatrix} 1 \end{pmatrix}$
3CNNJ43, 7T2 5 4CNNJ43, 7T2 5 4CNNJ43, 7T2 5 4CNNJ45, 5T2 7.5 4CNNJ47, 5T2 10 12 11 13 12 14 13 10 12 11 10 12 11 13 14 14 14 19 14 19 14 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 10 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< th=""><th></th><th>\neg \prec \downarrow</th><th>8</th><th></th><th><u> </u></th><th></th></t<>		\neg \prec \downarrow	8		<u> </u>	
3CMMJ43, 713 11 4CMMJ43, 712 5 4CMMJ45, 512 7.5 4CMMJ45, 512 7.5 4CMMJ47, 512 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10						(2)
4CNNJ43, 7T3 5 4CNNJ45, 5T3 7.5 4CNNJ47, 5T3 10 12 13 4CNNJ47, 5T3 10 13 14 14 14 19 14 10 11 110 110 111 110 112 113 113 14 114 14 110 14 110 14 110 14 111 14 111 14 111 14 111 14 110 14 110 14 110 14 110 14 111 14 111 14 111 14 111 14 111 14 111 15 111 17 111 17 111 17 111 17 111 10		3				
1000014.013.013.013.014.014.01 110 4000014.014.015.017 12 12 12 12 13 12 13 13 14 10 14 10 14 10 14 10 14 10 14 10 14 110 14 12 14 19 14 10 14 10 14 10 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 16 110 17 110 17 110 10 1110 10 1110 10 1110 10 1110 10 1110 10 1110 10 1110		- h	(10)			6
4CNMJ45.5T3 7.5 7.5 7.5 4CNMJ47.5T2 10 32 13 4CNMJ47.5T3 10 19 14 24 23 14 24 23 14 24 23 10 19 10 14 24 23 15 10 14 28 110 14 28 10 10 10 10 10 10 110 14 28 110 14 28 100 15 17 110 14 16 110 14 17 110 14 17 110 10 10 110 10 10 1110 10 10 1111 10 10 1111 10 10 1111 10 10 1111 10 10 1110 10 10 1110						
4 CNMJ47, 5T2 1 0 32 1 3 19 19 14 23 10 23 19 24 23 10 24 23 110 24 23 110 24 23 110 24 23 110 24 23 110 24 23 110 24 23 110 24 23 110 24 23 1110 14 23 1110 24 23 1110 14 23 1110 14 23 110 14 23 110 15 17 110 100 100 110 100 100 1100 100 100 1110 110 100 1110 100 100 1110 100 100 1110 100 100 1110 100		- '/ 'n				(7)
4CNWJ47.5T3 10 19 14 24 23 10 10 24 23 10 10 19 10 10 10 24 23 10 10 19 24 23 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </td <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>		2				
24 23 110 10 110 18 110 18 110 18 110 19 110 10	4 C N M J 4 7. 5 T 3	}				
DWG. W. Taj ina Mar·16·21 TITLE DWG No. JUDG. Indiinui Mar·16·21 PUMP SECTION A 4 2 6 0 6						
DWG. M. Tajina Mar·16·21 TITLE DWG No. JUDG. Inhihmil Mar·16·21 PUMP SECTION A 4 2 6 0 6			$\left(24\right)$			(23)
DWG. M. Tajima Mar·16·21 TITLE JUDG. M. Stailmuli Mar·16·21 TITLE		[
$\frac{\text{DWG. M. Tajina War \cdot 16 \cdot 21}}{\text{JUDG. I. Intilimit War \cdot 16 \cdot 21}} \text{ TITLE} \\ \text{PUMP SECTION} \\ \text{A42606} \\ \text{A42606} \\ Comparing the section of t$						
DWG.M. Tajima Mar·16·21 TITLE DWG No. JUDG. f. Intilinuil Mar·16·21 PUMP SECTION A 4 2 6 0 6) ·	
DWG.M.Tajina Mar·16·21 TITLE JUDG.J.Tatihaati Mar·16·21 PUMP SECTION A 4 2 6 0 6					•	
DWG.M.Tajina Mar·16·21 TITLE JUDG.J.Tatihani Mar·16·21 PUMP SECTION A 4 2 6 0 6						
DWG.M.Tajima Mar·16·21 TITLE JUDG.T.Tathihanti Mar·16·21 PUMP SECTION A 4 2 6 0 6						
DWG.M.Tajima Mar·16·21 TITLE JUDG.T.Tachibasaki Mar·16·21 PUMP SECTION A 4 2 6 0 6						
DWG.M.Tajima Mar·16·21 TITLE JUDG.T.Tachibasaki Mar·16·21 PUMP SECTION A 4 2 6 0 6						
$\frac{1}{1000} = \frac{1}{1000} = 1$		(74	(35)			
$\frac{1}{1000} = \frac{1}{1000} = 1$						•
JUDG. I. Tachibanaki Mar·16·21 PUMP SECTION A42606					ł	
$\frac{1}{1000} = \frac{1}{1000} = 1$						
$\frac{1}{1000} = \frac{1}{1000} = 1$	D. T. C. W	T				DWCN
			1	PSECT	ION	
APPD. M. Hashimoto Mar·16·21	APPDW				- U IN	A 4 2 6 U 6

No.	Denomination	Material
1	Cable(power)	VCT PVC insulated PVC sheathed cable
2	Cable entry	FC200(ASTM A48 Class 30) Gray Iron Casting
3	Eyebolt	SUS304 series(ASTM S30400SERIES) Stainless Steel
6	Stator	
7	Rotor Assembly	Shaft=SUS420J2 Stainless Steel
8	Thermal protector	Auto Reset Type Motor Protector
10	Stator Casing	FC200(ASTM A48 Class 30) Gray Iron Casting
11	Ball Bearing(Upper)	
12	Ball Bearing(Lower)	
13	Bearing Cover	FC200(ASTM A48 Class 30) Gray Iron Casting
14	Oil housing	FC2OO(ASTM A48 Class 30) Gray Iron Casting
15	Impeller	FC250(ASTM A48 Class 35) Gray Iron Casting
17	Pump Casing	FC250(ASTM A48 Class 35) Gray Iron Casting
18	Mechanical Seal	Upper : SiC/SiC Lower : SiC/SiC
19	Oil seal	Acrylonitrile Butadiene Rubber(NBR)
21	Stand	FC200(ASTM A48 Class 30) Gray Iron Casting
23	0i1	Turbine Oil #32
24	Air Valve	Locating Pin: Polyethylene Ball: Acrylonitrile Butadiene Rubber(NBR)
28	Mechanical Seal Bracket	FC200(ASTM A48 Class 30) Gray Iron Casting
32	Equalizer	Acrylonitrile Butadiene Rubber(NBR)
35	Shim	Polyethylene
74	Chopper plate	SUS304 series(ASTM S304SERIES) Stainless Steel
110	Oil Plug	SUS304 series(ASTM S304SERIES) Stainless Steel

	DWG.	S.Ohnishi	Mar·10·2021	TITLE	DWG No.	Δ0
	JUDG.	T. Tachiban a k	Mar·10·2021	MATERIALS LIST	A426065	
1805001	APPD.	M.Hashimoto	Mar·10·2021			
02 01						

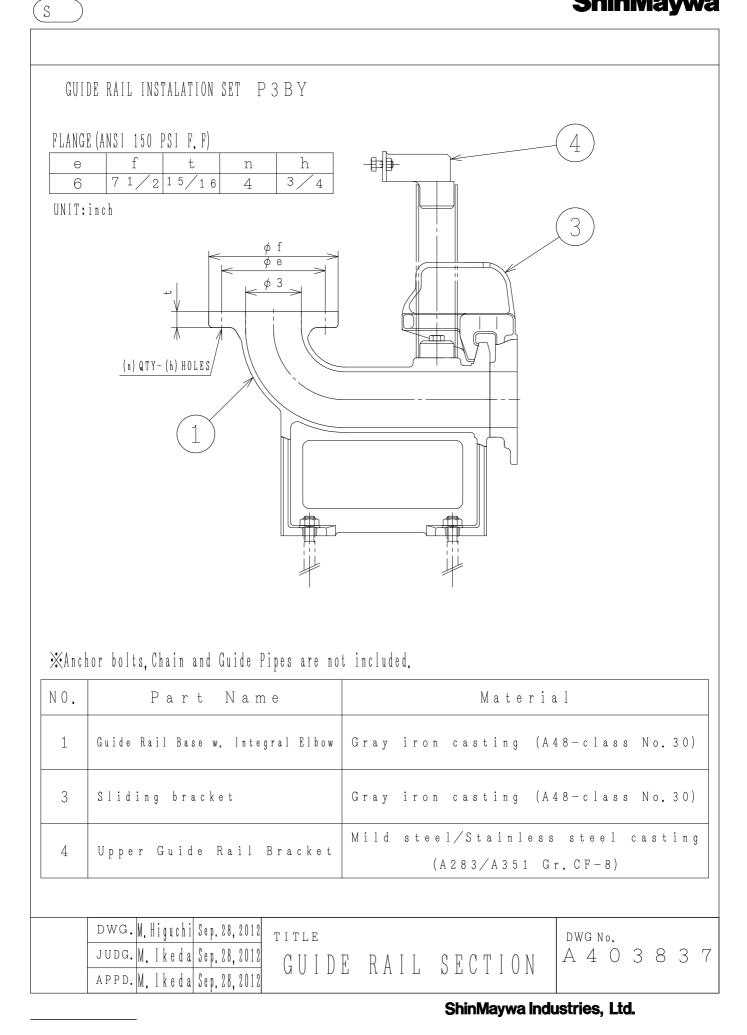
No.	Denomination	Material
1	Cable(power)	2 P N C T EPR insulated PCP sheathed cable
2	Cable entry	FC200(ASTM A48 Class 30) Gray Iron Casting
3	Eyebolt	SUS304 series(ASTM S30400SERIES) Stainless Steel
6	Stator	
7	Rotor Assembly	Shaft=SUS420J2 Stainless Steel
8	Thermal protector	Auto Reset Type Motor Protector
10	Stator Casing	FC200(ASTM A48 Class 30) Gray Iron Casting
11	Ball Bearing(Upper)	
12	Ball Bearing(Lower)	
13	Bearing Cover	FC200(ASTM A48 Class 30) Gray Iron Casting
14	Oil housing	FC200(ASTM A48 Class 30) Gray Iron Casting
15	Impeller	FC250(ASTM A48 Class 35) Gray Iron Casting
17	Pump Casing	FC250(ASTM A48 Class 35) Gray Iron Casting
18	Mechanical Seal	Upper : SiC/SiC Lower : SiC/SiC
19	Oil seal	Acrylonitrile Butadiene Rubber(NBR)
21	Stand	FC200(ASTM A48 Class 30) Gray Iron Casting
23	0i I	Turbine Oil #32
24	Air Valve	Locating Pin: Polyethylene Ball: Acrylonitrile Butadiene Rubber(NBR)
28	Mechanical Seal Bracket	FC200(ASTM A48 Class 30) Gray Iron Casting
32	Equalizer	Acrylonitrile Butadiene Rubber(NBR)
35	Shim	Polyethylene
74	Chopper plate	SUS304 series(ASTM S304SERIES) Stainless Steel
110	Oil Plug	SUS304 series(ASTM S304SERIES) Stainless Steel

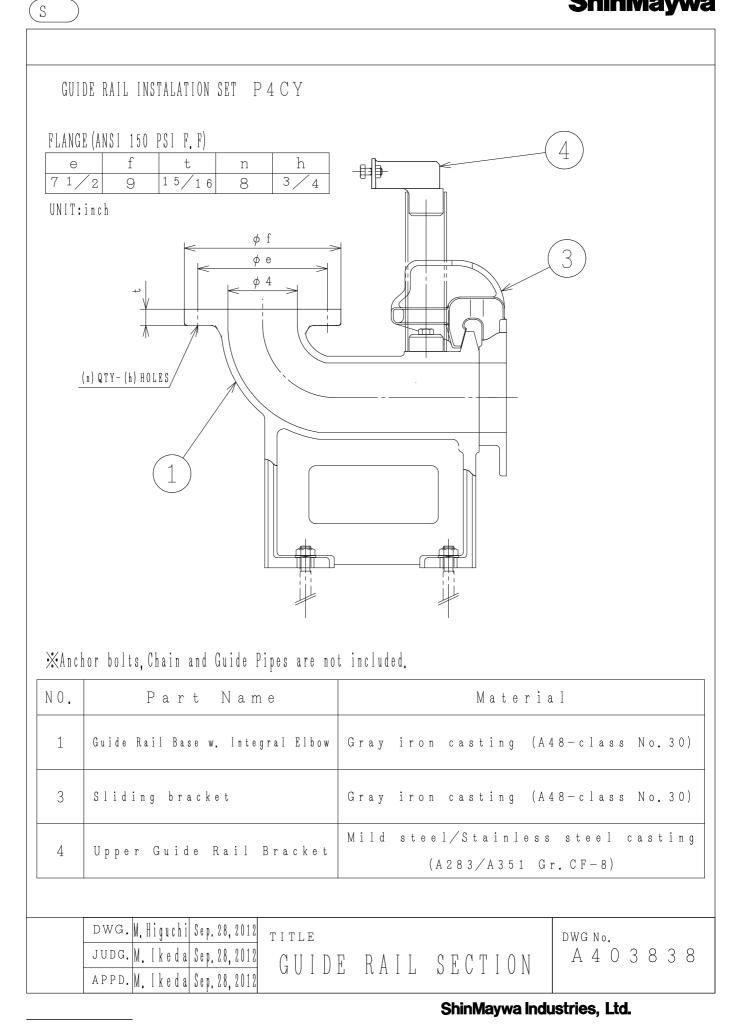
	DWG.	S.Ohnishi	Mar·10·2021	TITLE	DWG No.	Δ0
	JUDG.	T. Tachibanak	Mar·10·2021	MATERIALS LIST	A426119	
1805001	APPD.	M.Hashimoto	Mar·10·2021			
02 01						


ShinMaywa Industries,Ltd.

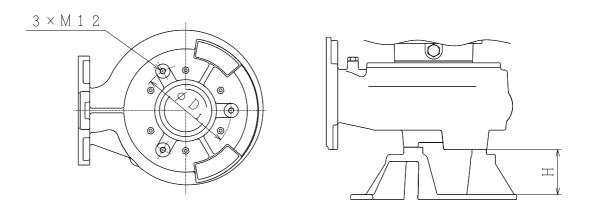
DRAWING LIST (Section View and Material List)

Discharge	Solid	Model		HP		Drawing	
Discharge	Size	Motor	Impeller	ПГ	Guide Rail Type	Drawing	
3"	3"	3CNMJ42.2T *	22-2	3	P3BY	A403837	
3	(80mm)	3CNMJ43.7T *	37-2	5	FJDT	A403037	
		4CNMJ42.2T *	22-2	3		4402020	
4"	3"	4CNMJ43.7T *	37-2	5	P4CY		
4	(80mm)	4CNMJ45.5T *	55-2	7.5	F401	A403838	
		4CNMJ47.5T *	75-2	10			


Section View and Material List for Guide Rail Connection


***** Voltage: 2 means 208/230V, 3 means 460V.

(Note)


1. Use a spanner to fasten the slide fastening nut because the box wrench interferes with the pump housing.

TAP INFORMATION FOR STAND

Discharge	Turpo	Impeller	HP	Solid	P.C.D	Clearance	Tap Drill Length	Stand
Size	Туре	No.	ΠF	Size	φ D1 (mm)	Н	(mm)	type
3 inch	3CNMJ42.2T *	22-2	3					
SILICIT	3CNMJ43.7T *	37-2	5		3 inch 192±0.3	3 inch	23	
	4CNMJ42.2T *	22-2	3	2 inch				F3/F4
1 inch	4CNMJ43.7T*	37-2	5	3 inch				(M78967-A)
4 inch	4CNMJ45.5T *	55-2	7.5					
	4CNMJ47.5T*	75-2	10					

***** Voltage: 2 means 208/230V, 3 means 460V.

SHOP PAINTING STANDARD

1. Scope

This specification covers the methods for painting the following ShinMaywa pumps in the shop. ShinMaywa Models: CNMJ

2. Surface Preparation

All surfaces to be painted shall be cleaned of oil, grease or other similar materials with solvent, and then shall be brushed and air blasted to remove rust or scale.

Prior to above preparation, mill scale, rust scale, chips and other foreign materials shall be removed in accordance with painting schedule.

3. Coating Procedure

Detailed coating procedures are as shown in each paint schedule.

Service		Painting Schedule					
Painting Part		Coating Material	Thickness of standards				
3"	Cast Parts	Epoxy resin paint (Non-Tar) Final color: BLACK	50µm or more				
	and The other	(Munsell system of color No.1.0)					

(Note)

- 2. Painting is assumed to be spray painting.
- 3. Painting excludes the cable and the resin parts.
- 4. Finishing coat is included priming coat due to circumstances of manufacturing.

MECHANICAL SEAL, BALL BEARING AND LUBRICATION OIL LIST

Discharge	Solid	Model			Bearing	Mechanical	
Discharge	Size	Motor	Impeller	HP	Upper	Lower	Seal Size
3"	3"	3CNMJ42.2T *	22-2	3	AC6304ZZC3/L448	6307ZZC3*	<i>ф</i> 25
3	(80mm)	3CNMJ43.7T* 37-2		5	AC6304ZZC3/L448	6308ZZC3*	<i>¢</i> 30
		4CNMJ42.2T *	22-2	3	AC6304ZZC3/L448	6307ZZC3*	<i>ф</i> 25
1 "	3"	4CNMJ43.7T *	37-2	5	AC6304ZZC3/L448	6308ZZC3*	<i>¢</i> 30
4"	(80mm)	4CNMJ45.5T*	55-2	7.5	AC6305ZZC3/L448	6310ZZC3*	<i>\$</i> 35
		4CNMJ47.5T*	75-2	10	AC6305ZZC3/L448	6310ZZC3*	<i>\$</i> 35

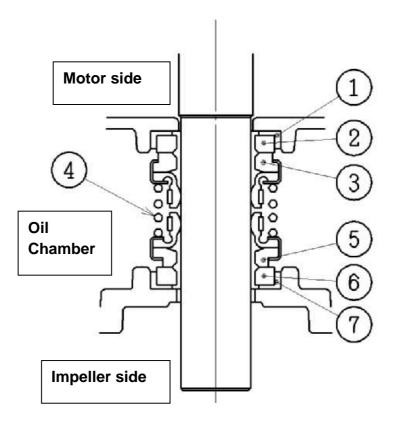
Bearing and Mechanical Seal information

Lubricating Oil

Discharge	Solid	Model			Lubricating Oil		
Discharge	Size	Motor	Impeller	HP	Capacity (ozs)	Capacity (cc)	Name
3"		3CNMJ42.2T *	22-2	3	Full tank (16)	Full tank (470)	
3"	(80mm)	3CNMJ43.7T *	37-2	5	Full tank (16)	Full tank (470)	Turking
		4CNMJ42.2T *	22-2	3	Full tank (16)	Full tank (470)	Turbine Oil
/ "	3"	4CNMJ43.7T *	37-2	5	Full tank (16)	Full tank (470)	#32
4"	(80mm)	4CNMJ45.5T *	55-2	7.5	Full tank (18)	Full tank (530)	#32
		4CNMJ47.5T *	75-2	10	Full tank (18)	Full tank (530)	

***** Voltage: 2 means 208/230V, 3 means 460V.

* Grease: Multemp SRL (KYODO YUSHI CO., LTD.)


MECHANICAL SEAL

Mechanical seal is the most critical part of submersible pumps.

ShinMaywa provides the most reliable mechanical seal available for submersible pumps.

ShinMaywa provides hard seal face materials for all "CNMJ" series submersible pumps.

The one coil double design mechanical seal in oil chamber provides long life and friction-free sealing of the motor shaft.

Standard Material	for CNMJ	series
-------------------	----------	--------

No.	Part Name	Materials
1	Cup Gasket	Acrylonitrile Butadiene Rubber (NBR)
2	Mating Ring	Silicon Carbide
3	Seal Ring	Silicon Carbide
4	Coil Spring	304 Stainless Steel
5	Seal Ring	Silicon Carbide
6	Mating Ring	Silicon Carbide
7	Cup Gasket	Acrylonitrile Butadiene Rubber (NBR)

MOTOR DATE

- 1. The data listed below are the design values.
- 2. The calculation of current is for a power supply of 60Hz 208/230V or 460V, direct on line start.

[208V]

		3HP (2.2kW)						
Οι	Output		5HP (3.7kW)	7.5HP (5.5kW)	10HP (7.5kW)			
Р	ole	4						
Full Load	Current (A)	9.5	15.5	23.7	32.0			
Efficiency	1/2 Load	73.8	70.7	79.3	77.1			
Efficiency	3/4 Load	75.8	74.7	80.8	80.8			
(%)	1/1 Load	74.8	75.1	80.5	80.3			
Power	1/2 Load	78.7	86.6	80.8	82.3			
Factor	3/4 Load	84.4	90.2	85.5	86.4			
(%)	1/1 Load	86.7	91.0	85.7	87.6			
Start Cu	urrent (A)	51.4	93.9	118	187			
Locked-Rote	or-Torque (%)	114	107	138	131			
Dowor	Sabla Ciza	1.25mm ²	2.0mm ²	3.5mm ²	5.5mm ²			
PowerC	Power Cable Size		(AWG14)	(AWG12)	(AWG10)			
Power Ca	able Length	50ft (15m)						

[230V]

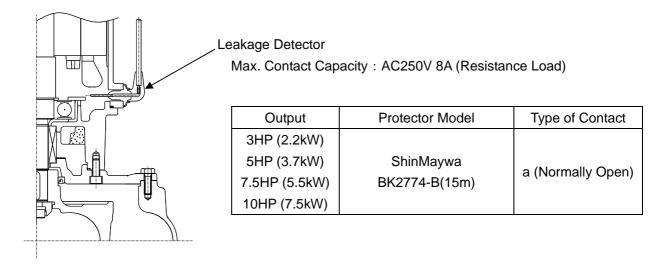
Οι	Output		3HP (2.2kW) 5HP (3.7kW) 7.5HP (5.5kW) 10				
P	Pole 4						
Full Load	Current (A)	8.6	14.0	21.4	29.0		
F#isianay	1/2 Load	72.4	68.7	80.9	78.9		
Efficiency	3/4 Load	75.6	74.0	81.8	82.1		
(%)	1/1 Load	76.7	75.8	82.7	81.8		
Power	1/2 Load	72.3	82.4	74.2	78.3		
Factor	3/4 Load	81.4	87.8	82.8	84.8		
(%)	1/1 Load	84.8	90.0	85.0	87.7		
Start Cu	urrent (A)	56.8	104	131	207		
Locked-Rote	or-Torque (%)	139	130	169	161		
Dowor			2.0mm ²	3.5mm ²	5.5mm ²		
PowerC	Cable Size	(AWG16)	(AWG14)	(AWG12)	(AWG10)		
Power Cable Length			50ft (15m)				

MOTOR DATE

【460V】

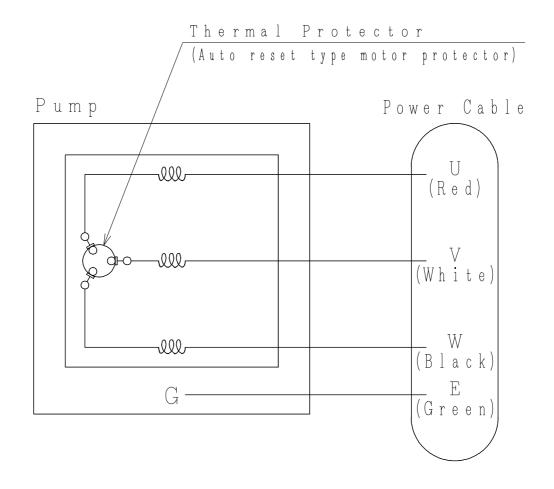
Output		3HP (2.2kW)	5HP (3.7kW)	7.5HP (5.5kW)	10HP (7.5kW)			
Р	ole	4						
Full Load	Current (A)	4.3	7.0	10.7	14.5			
Efficiency	1/2 Load	72.4	68.7	80.9	78.9			
Efficiency	3/4 Load	75.6	74.0	81.8	82.1			
(%)	1/1 Load	76.7	75.8	82.7	81.8			
Power	1/2 Load	72.3	82.4	74.2	78.3			
Factor	3/4 Load	81.4	87.8	82.8	84.8			
(%)	1/1 Load	84.8	90.0	85.0	87.7			
Start C	urrent (A)	28.4	51.9	65.2	103			
Locked-Rot	or-Torque (%)	139	130	169	161			
Dowor (Cable Size	1.25	mm ²	2.0mm ²	3.5mm ²			
PowerC		(AWG16)		(AWG14)	(AWG12)			
Power Ca	able Length		50ft (15m)					

PROTECTOR


【Thermal Protector】

The pump shall incorporate Thermal protector (Auto reset type) as a standard.

Output	Voltage	Protector Model
3HP (2.2kW)	208/230V	ShinMaywa A423669B
3HF (2.2KVV)	460V	ShinMaywa A425993B
	208/230V	ShinMaywa AM3863-B
5HP (3.7kW)	460V	ShinMaywa A423778A
7.5HP (5.5kW)	208/230V	ShinMaywa A400115C
7.5HF (5.5KVV)	460V	ShinMaywa A423778B
	208/230V	ShinMaywa H18347-D
10HP (7.5kW)	460V	ShinMaywa AM3863-B


【Leakage Detector (OPTION) 】

Leakage probe detector is available as an option to provide mechanical seal failure protection.

WIRING DIAGRAM

<u>WEIGHT</u>

[Pump]

Discharge	Solid	Model	HP	Pump Weight		
Discharge	Size	Motor	Impeller	пг	lb	kg
0"	3"	3CNMJ42.2T *	22-2	3	159	72
3"	(80mm)	3CNMJ43.7T *	37-2	5	183	83
		4CNMJ42.2T *	22-2	3	159	72
A "	3"	4CNMJ43.7T *	37-2	5	183	83
4"	(80mm)	4CNMJ45.5T *	55-2	7.5	243	110
		4CNMJ47.5T *	75-2	10	267	121

***** Voltage: 2 means 208/230V, 3 means 460V.

[Accessory]

Code		Weight	
		lb	kg
Pump Stand	F3/F4 (M78967-A)	22	10
Guide Rail	P3BY	70.5	32
Installation Set	P4CY	132	60